animatplot¶
version: | 0.2.2 |
---|---|
Source Code: | Github |
animatplot is a library for producing interactive animated plots in python built on top of matplotlib.
Contents
Installation¶
Using pip:
pip install animatplot
Warning
If matplotlib was installed with anaconda, please upgrade matplotlib to >= 2.2 with anaconda before installing animatplot with pip. Otherwise, pip may butcher your environment(s).
If you are using jupyter lab, then install jupyter-matplotlib.
Tutorial¶
Getting Started¶
Animatplot is built on the concept of blocks. We’ll start by animating a Line block.
First we need some imports.
Note
Interactivity is not available in the static docs. Run the code locally to get interactivity.
Basic Animation¶
In [1]:
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import animatplot as amp
We will animate the function:
\(y = \sin(2\pi(x+t))\) over the range \(x=[0,1]\), and \(t=[0,1]\)
Let’s generate the data:
In [2]:
x = np.linspace(0, 1, 50)
t = np.linspace(0, 1, 20)
X, T = np.meshgrid(x, t)
Y = np.sin(2*np.pi*(X+T))
In order to tell animatplot how to animate the data, we must pass it into a block. By default, the Line block will consider each of the rows in a 2D array to be a line at a different point in time.
We then pass a list of all our blocks into an Animation, and show the animation.
In [3]:
block = amp.blocks.Line(X, Y)
anim = amp.Animation([block])
anim.save_gif('images/line1') # save animation for docs
plt.show()

Adding Interactivity¶
We’ll use the same data to make a new animation with interactive controls.
In [4]:
block = amp.blocks.Line(X, Y)
anim = amp.Animation([block])
anim.controls() # creates a timeline_slider and a play/pause toggle
anim.save_gif('images/line2') # save animation for docs
plt.show()

Displaying the Time¶
The above animation didn’t display the time properly because we didn’t
tell animatplot what the values of time are. Instead it displayed the
frame number. We can simply pass our values of time into our call to
Animation
.
In [5]:
block = amp.blocks.Line(X, Y)
anim = amp.Animation([block], t) # pass in the time values
anim.controls()
anim.save_gif('images/line3') # save animation for docs
plt.show()

Controlling Time¶
Simply passing in the values of time into the call to Animation
doesn’t give us much control. Instead we use a Timeline
.
In [6]:
timeline = amp.Timeline(t, units='s', fps=20)
The units
argument will set text to be displayed next to the time
number.
The fps
argument gives you control over how fast the animation will
play.
In [7]:
block = amp.blocks.Line(X, Y)
anim = amp.Animation([block], timeline) # pass in the timeline instead
anim.controls()
anim.save_gif('images/line4') # save animation for docs
plt.show()

Built on Matplotlib¶
Since animatplot is build on matplotlib, we can use all of our matplotlib tools.
In [8]:
block = amp.blocks.Line(X, Y, marker='.', linestyle='-', color='r')
anim = amp.Animation([block], timeline)
# standard matplotlib stuff
plt.title('Sine Wave')
plt.xlabel('x')
plt.ylabel('y')
anim.controls()
anim.save_gif('images/line5') # save animation for docs
plt.show()

Using multiple blocks¶
Here we are going to use 2 different blocks in our animation.
First we need some imports:
In [1]:
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import animatplot as amp
We are going to plot a pcolormesh and a line on 2 different axes.
Let’s use: \(z = \sin(x^2+y^2-t)\) for the pcolormesh, and a cross-section of \(y=0\): \(z = \sin(x^2-t)\) for the line.
First, we generate the data.
In [2]:
x = np.linspace(-2, 2, 41)
y = np.linspace(-2, 2, 41)
t = np.linspace(0, 2*np.pi, 30)
X, Y, T = np.meshgrid(x, y, t)
pcolormesh_data = np.sin(X*X+Y*Y-T)
line_data = pcolormesh_data[20,:,:] # the slice where y=0
We need to be careful here. Our time axis is the last axis of our data,
but animatplot assumes it is the first axis by default. Fortunately, we
can use the t_axis
argument.
We use the axis
argument to attached the data to a specific subplot.
In [3]:
# standard matplotlib stuff
# create the different plotting axes
fig, (ax1, ax2) = plt.subplots(1, 2)
for ax in [ax1, ax2]:
ax.set_aspect('equal')
ax.set_xlabel('x')
ax2.set_ylabel('y', labelpad=-5)
ax1.set_ylabel('z')
ax1.set_ylim([-1.1,1.1])
fig.suptitle('Multiple blocks')
ax1.set_title('Cross Section: $y=0$')
ax2.set_title(r'$z=\sin(x^2+y^2-t)$')
# animatplot stuff
# now we make our blocks
line_block = amp.blocks.Line(X[0,:,:], line_data,
axis=ax1, t_axis=1)
pcolormesh_block = amp.blocks.Pcolormesh(X[:,:,0], Y[:,:,0], pcolormesh_data,
axis=ax2, t_axis=2, vmin=-1, vmax=1)
plt.colorbar(pcolormesh_block.quad)
timeline = amp.Timeline(t, fps=10)
# now to contruct the animation
anim = amp.Animation([pcolormesh_block, line_block], timeline)
anim.controls()
anim.save_gif('images/multiblock')
plt.show()
There is a lot going on here so lets break it down.
Firstly, the standard matplotlib stuff
is creating, and labeling all
of our axes for our subplot. This is exactly how one might do a static,
non-animated plot.
When we make the Line block, we pass in the data for our lines as 2D
arrays (X[0,:,:]
and line_data
). We attached that line to the
first axis axis=ax1
. We also specifify that the time axis is the
last axis of the data t_axis=1
.
When we make the Pcolormesh block, we pass in the x, y data as 2D arrays
(X[:,:,0]
and Y[:,:,0]
), and the z data as a 3D array. We
attached the pcolormesh to the second axis axis=ax2
. We also
specifify that the time axis is the last axis of the data t_axis=2
.
Additional, we told the Pcolormesh blocks what the minimum and maximum
values will be (vmin=-1
and vmax=1
), so that the colorscale will
be proper. The keywords vmin
, and vmax
get passed to the
underlaying called to matplotlib’s pcolormesh.
plt.colorbar
does not recognize the Pcolormesh block as a mappable,
so we pass in a mappable from the block to get the colorbar to work. In
the future, animatplot may have a wrapper around this.
The rest simply brings all of the blocks, and the timeline together into an animation.

Custimizing the Controls¶
Here we’ll like how to manipulate the timeline_slider
and the
toggle
button.
The interactive controls can be make using the controls()
method of
the animation class, as in the getting started tutorial, but this method
is a wrapper around the toggle
and timeline_slider
methods.
First, we need from imports and data to animate.
In [1]:
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import animatplot as amp
In [2]:
x = np.linspace(0, 1, 50)
t = np.linspace(0, 1, 20)
X, T = np.meshgrid(x, t)
Y = np.sin(2*np.pi*(X+T))
-
Animation.
toggle
(axis=None)[source] Creates a play/pause button to start/stop the animation
Parameters: axis (optional) – A matplotlib axis to attach the button to.
-
Animation.
timeline_slider
(axis=None, valfmt=’%1.2f’, color=None)[source] Creates a timeline slider.
Parameters: - axis (optional) – A matplotlib axis to attach the slider to
- valfmt (str, optional) – a format specifier used to print the time Defaults to ‘%1.2f’
- color – The color of the slider.
-
Animation.
controls
(timeline_slider_args={}, toggle_args={})[source] Creates interactive controls for the animation
Creates both a play/pause button, and a time slider at once
Parameters: - timeline_slider_args (Dict, optional) – A dictionary of arguments to be passed to timeline_slider()
- toggle_args (Dict, optional) – A dictionary of argyments to be passed to toggle()
Now to make the animation
By specifying the axis
parameter, we can change the position of
either the toggle or the timeline_slider.
We use color
to change the color of the slider, and valfmt
to
change how the time is displayed.
Let’s create our block, then create the controls at the top of the animation.
In [3]:
block = amp.blocks.Line(X, Y)
plt.subplots_adjust(top=0.8) # squish the plot to make space for the controls
slider_axis = plt.axes([.18, .89, .5, .03]) # the rect of the axis
button_axis = plt.axes([.78, .87, .1, .07]) # x, y, width, height
anim = amp.Animation([block])
anim.toggle(button_axis)
anim.timeline_slider(slider_axis, color='red', valfmt='%1.0f')
# equivalent to:
# anim.controls({'axis':slider_axis, 'color':'red', 'valfmt': '%1.0f'},
# {'axis':button_axis})
anim.save_gif('images/controls')
plt.show()

Using Jupyter¶
In order to display interactive animations in jupyter notebook or lab, use one of the following line magics:
%matplotlib notebook # notebook only
%matplotlib ipympl # notebook or lab
%matplotlib widget # notebook or lab (equivalent to ipympl)
API¶
Animatplot is build on top of three main classes:
- Animation
- Block
- Timeline
A Timeline
holds the information and logic to actually control the timing of all animations.
A Block
represent any “thing” that is to be animated.
An Animation
is a composition of a list of blocks and a timeline. This class builds the final animation.
blocks¶
Blocks handle the animation of different types of data.
The following blocks are available in animatplot.blocks
.
Block ([axis, t_axis]) |
A base class for blocks |
Line (x, y[, axis, t_axis]) |
Animates lines |
Quiver (X, Y, U, V[, axis, t_axis]) |
A block for animated quiver plots |
Pcolormesh (*args[, axis, t_axis]) |
Animates a pcolormesh |
Imshow (images[, axis, t_axis]) |
Animates a series of images |
Nuke (func, axis, length[, fargs]) |
For when the other blocks just won’t do |
Example Gallery¶
Warning
For the purpose of these documents, animations are rendered as gifs and with a lower framerate and fewer frames to make them smaller.
If you run these animations locally, then they will be interactive.
Interactivity is available in Jupyter Notebook with following cell magic.
%matplotlib notebook
Nuke¶
Sometimes matplotlib just doesn’t give us the tools we need to animate stuff. This block is a way to work around that.
Matplotlib.axes.Axes.quiver does not have a way to dynamically set the location of arrows, only the angle. In this example, we work around that.
In [1]:
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import animatplot as amp
Lets first construct our data.
In [2]:
E0 = np.array([1, 2])
E0 = E0 / np.linalg.norm(E0)
phi = np.array([0, np.pi/7])
f = 3
t = np.linspace(0,2*np.pi,100)
ES = E0[:, np.newaxis]*np.exp(1j*(t+phi[:, np.newaxis])) # fancy array boardcasting
Now, we animate the data.
In [3]:
fig, ax = plt.subplots()
def animate(i):
ax.set_title('Polarization')
ax.set_aspect('equal')
ax.set(xlim=(-1.2, 1.2), ylim=(-1.2, 1.2))
E = E0*np.exp(1j*(f*t[i]+phi))
xx = np.array([0,E[0].real,0])
yy = np.array([0,0,0])
uu = np.array([E[0].real,0,E[0].real])
vv = np.array([0,E[1].real,E[1].real])
plax = ax.plot(ES[0].real, ES.real[1])
qax = ax.quiver(xx,yy,uu,vv,[0,55,200], scale_units='xy', scale=1.)
animate(0) # initialise the plot with the animate function
timeline = amp.Timeline(t, units='ns', fps=10)
block = amp.blocks.Nuke(animate, axis=ax, length=len(timeline))
anim = amp.Animation([block], timeline)
anim.controls()
anim.save_gif('nuke')
plt.show()

Imshow¶
In [1]:
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import animatplot as amp
First we focus on creating the data. A ising model is used to make this data.
In [2]:
# Define LxL matrix
L = 55
# Initialize as random spin
M = 2*(np.random.rand(L,L)>.5)-1
J = 1
b = 2.5
nPer = 100
images = [M]
for i in range(100):
M = M.copy()
for dm in range(nPer):
jj = int(np.random.rand()*L - 1)
kk = int(np.random.rand()*L - 1)
dE = 2*J*(M[jj+1,kk] + M[jj-1,kk] + M[jj,kk+1] + M[jj,kk-1])*M[jj,kk]
if dE <= 0:
M[jj,kk]*=-1
else:
if(np.random.rand()<np.exp(-b*dE)):
M[jj,kk]*=-1
images.append(M)
M[:,-1] = M[:,0]
M[-1,:] = M[0,:]
Now we plot it.
In [3]:
block = amp.blocks.Imshow(images)
anim = amp.Animation([block])
anim.controls()
anim.save_gif('ising')
plt.show()

Logarithmic Timescales¶
Simply pass the keyword argument log=True
to the Timeline, to get
logarithmic timescales.
In [1]:
import numpy as np
import matplotlib.pyplot as plt
import animatplot as amp
x = np.linspace(0, 1, 20)
t = np.logspace(0, 2, 30)
X, T = np.meshgrid(x, t)
Y = np.sin(X*np.pi)*np.log(T)
timeline = amp.Timeline(t, log=True)
block = amp.blocks.Line(X, Y)
anim = amp.Animation([block], timeline)
plt.xlim([0,1])
plt.ylim([0,Y.max()+1])
anim.controls()
anim.save_gif('logtime')
plt.show()
<Figure size 640x480 with 3 Axes>

Parametric¶
In [1]:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import PillowWriter
import animatplot as aplt
def psi(t):
x = t
y = np.sin(t)
return x, y
t = np.linspace(0, 2*np.pi, 25)
x, y = psi(t)
X, Y = aplt.util.parametric_line(x, y)
timeline = aplt.Timeline(t, 's', 24)
ax = plt.axes(xlim=[0, 7], ylim=[-1.1, 1.1])
block1 = aplt.blocks.Line(X, Y, ax)
# or equivalently
# block1 = aplt.blocks.ParametricLine(x, y, ax)
anim = aplt.Animation([block1], timeline)
# Your standard matplotlib stuff
plt.title('Parametric Line')
plt.xlabel('x')
plt.ylabel(r'y')
# Create Interactive Elements
anim.toggle()
anim.timeline_slider()
anim.save('parametric.gif', writer=PillowWriter(fps=5))
plt.show()
<Figure size 640x480 with 3 Axes>

pcolormesh¶
In [1]:
import numpy as np
import matplotlib.pyplot as plt
import animatplot as amp
x = np.linspace(-2, 2, 50)
y = np.linspace(-2, 2, 50)
t = np.linspace(0, 2*np.pi, 40)
X, Y, T = np.meshgrid(x, y, t)
Z = np.sin(X*X+Y*Y-T)
block = amp.blocks.Pcolormesh(X[:,:,0], Y[:,:,0], Z, t_axis=2, cmap='RdBu')
plt.colorbar(block.quad)
plt.gca().set_aspect('equal')
anim = amp.Animation([block], amp.Timeline(t))
anim.controls()
anim.save_gif('pcolormesh')
plt.show()
<Figure size 640x480 with 4 Axes>

Polarization¶
In [1]:
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import animatplot as amp
Let’s create the data.
In [2]:
E0 = np.array([1, 2])
E0 = E0 / np.linalg.norm(E0)
phi = np.array([0, np.pi/7])
f = 3
t = np.linspace(0,2*np.pi,50)
# The Electric Field
E = E0[:, np.newaxis]*np.exp(1j*(t+phi[:, np.newaxis])) # fancy array boardcasting
# Converting the Electric field into animatable arrows.
X = np.zeros(3) # x location of the arrow tails
Y = np.zeros(3) # y location of the arrow tails
zeros = np.zeros_like(E[0,:]) # padding
U = np.array([E[0,:], zeros, E[0,:]]).real
V = np.array([zeros, E[1,:], E[1,:]]).real
Now to animate it.
In [3]:
plt.plot(E[0].real, E.real[1])
timeline = amp.Timeline(t, units='ns', fps=20)
block = amp.blocks.Quiver(X, Y, U, V, t_axis=1, scale_units='xy', scale=1)
anim = amp.Animation([block], timeline)
block.ax.set_aspect('equal')
block.ax.set_xlim([-1,1])
block.ax.set_ylim([-1,1])
anim.controls()
anim.save_gif('polarization')
plt.show()

Quiver Plot¶
In [1]:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import PillowWriter
import animatplot as aplt
x = np.linspace(0, 2*np.pi, 10)
y = np.linspace(0, 2*np.pi, 5)
t = np.linspace(0, 4.9, 25)
timeline = aplt.Timeline(t)
X, Y, T = np.meshgrid(x, y, t)
U = np.cos(X+T)
V = np.sin(Y+T)
ax = plt.axes(xlim=[-1, 7], ylim=[-1, 7])
block1 = aplt.blocks.Quiver(X[:,:,0], Y[:,:,0], U, V, axis=ax, t_axis=2, units='inches', pivot='mid')
anim = aplt.Animation([block1], timeline)
anim.toggle()
anim.timeline_slider()
anim.save('quiver.gif', writer=PillowWriter(fps=10))
plt.show()
<Figure size 640x480 with 3 Axes>

Square Well¶
In [1]:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import PillowWriter
import animatplot as aplt
def psi(x, t):
return (2**-.5*np.exp(t*1j)*np.sin(np.pi*x)
+ .5*np.exp(t*4j)*np.sin(2*np.pi*x)
+ .5*np.exp(t*9j)*np.sin(3*np.pi*x))
x = np.linspace(0, 1, 20)
t = np.linspace(0, 10, 20)
X, T = np.meshgrid(x, t)
Y1 = psi(X, T).real
Y2 = psi(X, T).imag
timeline = aplt.Timeline(t, 's', 24)
ax = plt.axes(xlim=[0, 1], ylim=[-2, 2])
block1 = aplt.blocks.Line(X, Y1, ax)
block2 = aplt.blocks.Line(X, Y2, ax)
anim = aplt.Animation([block1, block2], timeline)
# Your standard matplotlib stuff
plt.title(r'Particle in a Box: $|\Psi\rangle = \frac{1}{\sqrt{2}}'
r'|E_1\rangle + \frac{1}{2}|E_2\rangle + \frac{1}{2}|E_3\rangle$',
y=1.03)
plt.xlabel('position')
plt.ylabel(r'$\Psi$')
plt.legend(['Real', 'Imaginary'])
anim.toggle()
anim.timeline_slider()
anim.save('sq_well.gif', writer=PillowWriter(fps=5))
plt.show()
<Figure size 640x480 with 3 Axes>

Developer Setup¶
Requirements¶
The following are required to build the docs.
sphinx>=1.5.1
ipykernel
nbsphinx
matplotlib>=2.2
numpy
Install¶
Clone and install the repository:
git clone https://github.com/t-makaro/animatplot.git
cd animatplot
pip install -e .
Testing¶
From the root animatplot directory simply run:
pytest
Warning
Tests are currently very limited. Please run examples to ensure everything works.
Linting¶
This project currently uses pycodestyle
for linting.
Changes to animatplot¶
0.2.2¶
- Fix .animations and .blocks subpackages not being distributed properly.
0.2.0¶
- Complete and total overhaul of animatplot using with the idea of
blocks
as a foundation - Chuck all previous attempts to support python 2 in the dumpster
0.1.0.dev3¶
This is the original release.